Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage
نویسندگان
چکیده
Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications.
منابع مشابه
Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity
Porous electrode capacitors are used extensively in systems which store energy, harvest mixing energy, or desalinate water. These electrodes can possess a hierarchical pore structure with larger macroscale pores allowing for facile ion and fluid transport, and smaller, nanometer-scale pores enabling significant ion storage. We here present a combined theoretical (linear circuit model) and exper...
متن کاملLow-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage
Highly powered electrostatic capacitors based on nanostructures with a high aspect ratio are becoming critical for advanced energy storage technology because of their high burst power and energy storage capability. We report the fabrication process and the electrical characteristics of high capacitance density capacitors with three-dimensional solid-state nanocapacitors based on a ZnO nanowire ...
متن کاملFibers for Textile - Based Electrical Energy Storage
This research will demonstrate feasibility for manufacturing fiber-based ceramic capacitors suitable for electrical energy storage within multifunctional textile products. Capacitive energy storage is well matched to applications requiring high specific power, long cycle life, and high reliability. We are using a simple chemical scheme for preparing fiber-based capacitors by coating electricall...
متن کاملComparison of Binary and Ternary Compositions of Ni-Co-Cu Oxides/VACNTs Electrodes for Energy Storage Devices with Excellent Capacitive Behaviour
Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...
متن کاملCarbon Nanotube-Based Supercapacitors
Due to the need for increased power performance, supercapacitors are emerging as an alternative to conventional electric energy storage devices. Because of their unique properties, carbon nanotubes are a promising material for next generation supercapacitors. Specifically, the use of nanotubes to construct supercapacitor electrodes can increases the power density and performance of supercapacit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2015